Lower Bounds on the Convergence Rates of Adaptive Mcmc Methods
نویسندگان
چکیده
We consider the convergence properties of recently proposed adaptive Markov chain Monte Carlo (MCMC) algorithms for approximation of high-dimensional integrals arising in Bayesian analysis and statistical mechanics. Despite their name, in the general case these algorithms produce non-Markovian, time-inhomogeneous, irreversible stochastic processes. Nevertheless, we show that lower bounds on the mixing times of these processes can be obtained using familiar ideas of hitting times and conductance from the theory of reversible Markov chains. While loose in some cases, the bounds obtained are sufficient to demonstrate slow mixing of several recently proposed algorithms including the adaptive Metropolis algorithm of Haario et al. (2001), the equi-energy sampler (Kou et al., 2006), and the importance-resampling MCMC algorithm (Atchadé, 2009) on some multimodal target distributions including mixtures of normal distributions and the mean-field Potts model. These results appear to be the first non-trivial bounds on the mixing times of adaptive MCMC samplers, and suggest that the adaptive methods considered may not provide qualitative improvements in mixing over the simpler Markov chain algorithms on which they are based. Our bounds also indicate properties which adaptive MCMC algorithms must have to achieve exponential speed-ups, suggesting directions for further research in these methods.
منابع مشابه
Convergence of Adaptive Markov Chain Monte Carlo Algorithms
In the thesis, we study ergodicity of adaptive Markov Chain Monte Carlo methods (MCMC) based on two conditions (Diminishing Adaptation and Containment which together imply ergodicity), explain the advantages of adaptive MCMC, and apply the theoretical result for some applications. First we show several facts: 1. Diminishing Adaptation alone may not guarantee ergodicity; 2. Containment is not ne...
متن کاملRichardson and Chebyshev Iterative Methods by Using G-frames
In this paper, we design some iterative schemes for solving operator equation $ Lu=f $, where $ L:Hrightarrow H $ is a bounded, invertible and self-adjoint operator on a separable Hilbert space $ H $. In this concern, Richardson and Chebyshev iterative methods are two outstanding as well as long-standing ones. They can be implemented in different ways via different concepts.In this paper...
متن کاملFault tolerant nano-satellite attitude control by adaptive modified nonsingular fast terminal control
In this paper, an adaptive fault tolerant nonlinear control is proposed for attitude tracking problem of satellite with three magnetorquers and one reaction wheel in the presence of inertia uncertainties, external disturbances, and actuator faults. Firstly, sliding surface variable is chosen based on avoiding the singularity of control signal and guaranteeing the convergence of attitude trackin...
متن کاملMarkov Chain Monte Carlo Algorithms: Theory and Practice
We describe the importance and widespread use of Markov chain Monte Carlo (MCMC) algorithms, with an emphasis on the roles in which theoretical analysis can help with their practical implementation. In particular, we discuss how to achieve rigorous quantitative bounds on convergence to stationarity using the coupling method together with drift and minorisation conditions. We also discuss recent...
متن کاملExplicit control of subgeometric ergodicity
This paper discusses explicit quantitative bounds on the convergence rates of Markov chains on general state spaces, under so-called drift and minorization conditions. The focus of this paper is on practical conditions that lead to subgeometric rates. Such explicit bounds are particularly relevant in applications where a family of Markov transition probabilities {Pθ : θ ∈ Θ} is considered and f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010